<<
>>

ИСПОЛЬЗОВАНИЕ В ПРОГНОЗИРОВАНИИ РЕГИОНАЛЬНОГО РАЗВИТИЯ ЭКОНОМЕТРИЧЕСКИХ МОДЕЛЕЙ

Методологические аспекты анализа и прогнозирования развития экономических систем. Эконометрические модели в прогнозировании регионального развития. Имитационное моделирование.

Формирование прогнозного варианта развития. Системы моделей анализа и прогнозирования мезоэкономики, позволяющие сформировать рациональный вариант развития регионального хозяйственного комплекса в разрезе отраслей. Методология САПСЭР. Альтернативные эконометрические модели развития региональной экономики. УКР-1, УКР-2, интегрированная система макроэкономического анализа и прогнозирования отраслевого и регионального развития (ИСПР). Особенности сочетания методологий СНС и БНХ. Понятие межотраслевого баланса. Методические принципы построения воспроизводственных моделей в ИСПР.

Методология управления развитием регионов должна предусматривать анализ экономических и социальных аспектов этого развития в ретроспективном периоде с учетом степени реализации прогнозов социально-экономического развития и государственных целевых программ.

Методический инструментарий государственного регулирования в разных странах но своему содержанию не гак уж разнообразен и сопрягается с несколькими типами хорошо освоенных в России экономико-математических моделей. Обобщая существующую практику регулирования, можно выделить следующие его модели: макромодели среднесрочного планирования и перспективного прогнозирования в разрезе нескольких десятков отраслей с выделением материально-веществен ного и денежного аспектов; их модификации, полученные на основе использования балансов и СНС; одноуровневые разложимые динамические модели экономического роста, относящиеся преимущественно к классу моделей оптимального программирования.

Процесс планирования позволяет обеспечить стабильность, пропорциональность, сбалансированность работы предприятий, отраслей региона и должен опираться на результаты прогнозирования.

Прогнозирование деятельности предприятий наиболее тесно связано с планированием. План и прогноз являются составляющими функции планирования в менеджменте и представляют собой взаимодополняющие процессы. Сроки, объемы работ, числовые характеристики объекта и другие показатели в прогнозе носят вероятностный характер и обязательно предусматривают возможность внесения корректировок. В отличие lt;гг прогноза план содержит однозначно определенные сроки осуществления события и характеристики планируемого объекта.

Прогнозирование может быть направлено па разнообразные объекты, иногда относящиеся к разным отраслям (сферам) человеческой деятельности. Одним из объектов прогнозирования выступает устойчивое региональное развитие.

Исследования экономического роста и возможности в будущем развиваться устойчиво требуют перспективного охвата региональной политики и системного подхода. Общество и экономика должны рассматриваться как взаимозависимые элементы одной системы. Обоснованное решение проблемы устойчивого развития требует выхода за пределы чисто экономических вопросов и изучения изменений в обществе, способности его адаптироваться к новым условиям. В связи с этим применение различных методов социально-экономического прогнозирования становится особенно актуальным. Высокая неопределенность событий в современных условиях обусловливает необходимость научного предвидения их вероятностного исхода в будущем и способствует дальнейшему совершенствованию методов прогнозирования.

Целью прогнозирования является получение представления о тенденциях развития региона в будущем.

В экономической науке даются различные определения понятий «прогноз» и «прогнозирование», предлагаются различные варианты классификаций методов прогнозирования. «Прогноз» (от гр. prognosis — предвидение, предсказание о развитии чего-либо, основанное на определенных данных) — это комплекс аргументированных предположений, выраженных в качественной и количественной формах, относительно будущих параметров социально-экономической системы.

По нашему мнению, за основу можно взять следующее определение: под прогнозом понимается научно обоснованное суждение о возможных состояниях объектов в будущем, об альтернативных путях и сроках достижения этих состояний. Процесс разработки прогнозов называется прогнозированием. Под методами прогнозирования подразумевают совокупность приемов мышления, способов, позволяющих на основе анализа информации о прогнозном объекте вынести относительно достоверное суждение о его будущем развитии. От типа объекта зависит тин применяемого метода.

К основным принципам прогнозирования регионального развития относят системность, непрерывность, вариантность, адекватность и оптимальность.

Используют два подхода к прогнозному процессу: генетический и нормативно-целевой. Первый отражает зависимость будущего от настоящего, предусматривая разработку поисковых прогнозов, определение возможных состояний явления в будущем на основе экстраполяции тенденций развития. Второй рассматривает связь явлений в направлении от будущего к настоящему, определяя пути и сроки достижения желаемых состояний изучаемого явления.

В литературе приводятся различные классификации методов социально-экономического прогнозирования. Классификация по степени формализации, обобщающая различные подходы, приведена на рис. 4.1. Большинство российских прогнозистов совокупность этих методов делят натри группы: фактографические (формализованные); экспертные (интуитивные); комбинированные (комплексные).

Фактографические (формализованные) методы базируются на первичной информации об объекте и наиболее часто привлекаются для прогнозирования развития социально-экономических систем. В пользу применения количественного подхода к прогнозному процессу, который реализуется на основе статистических методов, можно привести следующие аргументы. Статистические методы прогнозирования входят в большинство известных статистических пакетов прикладных программ (IIIIII), таких как Statistika, SPSS, Advanced Grapher, Forecast Expert и др. Они требуют сравнительно небольшого времени для обновления оценок параметров и основываются на реальной статист ической информации и в сравнении с экспертными методами более объективны.

Экспертные (интуитивные) методы прогнозирования как научный инструмент упреждающего управления сложными неформализованными проблемами позволяют получить прогнозную оценку состояния развития объекта в будущем независимо от информационного обеспечения. Экспертные методы предполагают использование информации, получаемой отспециалистов-экспертов. Те в свою очередь пред-

Рис. 4.1. Классификация методов социально-экономического прогнозирования по степени формализации

варительпо обобщают фактографическую или иную информацию. Это определяет основное преимущество данных методов — возможность анализа и прогноза развития объекта, не имеющего никакой «предыстории». Другим достоинством этих методов является возможность прогнозировать качественные (скачкообразные) изменения в процессе развития объекта, в то время как подавляющее большинство фактографических методов «распространяет» ретроспективную тенденцию на весь период упреждения прогноза.

Среди групповых экспертных методов широкое распространение получил метод «Дельфи». Его особенность — анонимность экспертных ответов, многоэтапность экспертизы, в ходе которой ответы экспертов уточняются, а все опрашиваемые эксперты знакомятся с результатами опроса каждого тура и обосновывают оценки, отклоняющиеся от мнения большинства.

Среди комбинированных (комплексных) методов прогнозирования наиболее распространенным является метод сценариев. Он объединяет и качественные, и количественные подходы. Сценарий — это модель будущего, которая описывает возможный ход событий с указанием вероятности их реализации. В сценарии определяются основные факторы, которые должны быть приняты во внимание, и указывается, каким образом они Moiyr повлиять на возможные события. Как правило, составляется несколько альтернативных сценариев, и наиболее вероятный или желательный вариант обычно рассматривается в качестве базового и привлекается для принятия решения.

Прогнозирование весьма широкого спектра проблем осуществляется наивными методами. В экономических исследованиях изучаются связи между случайными и неслучайными величинами. Такие связи называются регрессионными, а методы их изучения корреляционно-регрессионным анализом. Математическая задача формулируется следующим образом: требуется найти аналитическое выражение зависимости экономического явления от определяющих его факторов, т.е. функцию у =/(дг„ х2,..., х„).

В отдельную группу выделены методы, основанные на использовании нейронных сетей. Нейронные сети (11C) — это обобщенное название нескольких групп математических алгоритмов нелинейной многомерной регрессии, обладающих способностью обучаться на примерах, «узнавая» впоследствии черты ранее встреченных образов и ситуаций. Назначение нейросетей — решение задач, для которых пока не найдены формальные методы и алгоритмы, а входные данные неполны и противоречивы.

В практике прогнозирования используются различные типы нейронных сетей: сеть Хопфилда, сеть Кохонена, сеть Хэмминга и т.д. ПС обратного распространения ошибки (back propagation, англ.) — это мощнейший инструмент поиска закономерностей, прогнозирования, качественного анализа. Такое название — «сети обратного распространения» — они получили в силу используемого алгоритма обучения, в котором ошибка распространяется от выходного слоя к входному, т.е. в направлении, противоположном направлению распространения сигнала при нормальном функционировании сети. Для ограничения пространства поиска при обучении ставится задача минимизации целевой функции ошибки ПС, которая находится по методу наименьших квадратов.

Практическое применение того или иного метода прогнозирования определяется не аспектом проблемы и не возможностью измерения результатов прогноза, а сложностью объекта, наличием необходимой информации и выбранной методики прогнозирования, квалификации прогнозиста.

Система показателей социально-экономического развития региона — сложная иерархическая структура со множеством частных показателей. В зависимости от задачи управления в нее могут включаться критерии, отражающие социальный, экономический и другие эффекты варианта развития.

Методология анализа и прогнозирования развития экономической системы региона базируется на следующих положениях: сочетании формального и неформального подходов: экспериментальном подходе при реализации модельного комплекса; математической и технологической поддержке направленного вычислительного эксперимента на имитационных моделях; высоком технологическом уровне систем принятия решения.

Наиболее перспективным направлением в системах принятия

решений является разработка методов, объединяющих аналитические методы принятия решений с экспертными процедурами и предназначенных для управления развитием региона. Развитие неформального подхода при осуществлении управления региональной экономикой основано на широком использовании методов искусственного интеллекта, экспертного оценивания, а также на применении экспертных систем. В сложных модельных системах, какими являются региональные системы управления, в условиях многокритериальности при принятии решений применение классических методов оптимизации ограничено сложностью реализации. Практически невозможно, имея неполную информацию, математически точно сформулировать цели, определить и сформировать оптимальный вариант. Кроме того, существует проблема согласования интересов, которая связана с противоречием целей отдельных подсистем, которая на практике приводит к поиску согласованного рационального решения. Поэтому доминирующими в формировании механизма управления экономикой на региональном уровне являются эконометрические модели как основа для поиска и формирования варианта будущего развития. Их применение позволит па практике региональным органам управления решать сложные задачи социально-экономического развития и вырабатывать реальные стратегии, а внутри них выбирать рациональные варианты развития. Модели способствуют пониманию реальной проблемы, облегчают процесс принятия решения.

Интенсивное развитие эконометрических методов в региональном менеджменте объясняется рядом причин.

Существуют различные варианты определения эконометрики — от чрезмерно расширительных (когда к эконометрике относят все, что связано е изменениями в экономике) до узко инструментально ориентированных (когда под эконометрикой понимают определенный набор математико-статистических средств, позволяющих верифицировать модельные соотношения между анализируемыми экономическими показателями и оценивать неизвестные значения параметров в этих соотношениях на базе исходных экономических данных).

Название «эконометрика» было введено в 1926 г. норвежским экономистом и статистиком Рангиаром Фришем. В буквальном переводе этот термин означает «изменения в экономике» и поэтому формально соответствует упомянутому выше расширенному толкованию. Однако в настоящее время устоялся и стал широко распространен более ограниченный взгляд на содержание и назначение эконометрики, в частности, отраженный в следующем определении: эконометрика — это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе экономической теории, экономической статистики, математико-статистического инструментария придавать конкретное количественное выражение общим (качественным) закономерностям, обусловленными экономической теорией.

Следующее определение эконометрики дают ().(). Замков и Л. В. Тол- стопятенко: эконометрика — наука, исследующая количественные закономерности и взаимозависимости в экономике с помощью методов математической статистики. Основа этих методов — корреляционно- регрессионный анализ[13].

Эконометрика охватывает вес аспекты применения математических методов в экономике, выявляет, строит и изучает конкретные количественные зависимости одних экономических показателей от других, используя статистические методы для обработки информации и оценки правдоподобия построений, а математические — для их анализа.

Эконометрические модели разрабатываются для прогнозирования экономических показателей такого типа, которые встречаются в национальных счетах (например, ВНП, личный доход, расходы на личное потребление, капиталовложения, правительственные закупки товаров и услуг, чистый экспорт и т.д.). В центре внимания эконометрических моделей находятся общий объем производства, а также доходы и платежи, возникающие в процессе производства.

Традиционная эконометрика предписывает исследователю построить модель, собрать данные, выбрать подходящий метод оценивания и затем оценить модель. После того как получена подходящая модель, можно делать шаги в разных направлениях: оценивать функции параметров (например, эластичности), проверять гипотезы, представляющие интерес, делать прогнозы или давать рекомендации по экономической политике.

Для комплексного анализа и прогнозирования перспектив развития экономики используются экономико-математические модели, которые различаются целями и принципами построения, способами функционирования и степенью агрегации показателей.

Среди применяемых моделей можно выделить два основных вида: структурные; фу нкцион ал ьн ы е.

Структурные модели отражают технико-экономическую организацию экономического объекта, его составные части и внутренние параметры. К этому классу относятся модели межотраслевого баланса, оптимизационные модели, модели управления запасами и т.д.

Функциональные модели строятся на принципиально иной методологической основе. Они характеризуют поведение объекта в результате установления взаимозависимостей между исследуемыми выходными и входными параметрами, без привлечения дополнительной информации о его внутренней структуре.

К функциональным относятся эконометрические модели, представляющие собой системы регрессионных уравнений и тождеств, каждое из которых используется для определения одного исследуемого показателя. При этом показатели, выступающие в одних уравнениях в качестве переменных, в других используются в качестве аргумента, влияющего на значения остальных переменных. В более узком смысле

эконометрическими моделями считаются системы уравнении, учитывающие вероятностный характер экономических процессов. Отсюда следует, что уравнения эконометрических моделей содержат также и случайные переменные, а ее параметры устанавливаются статистически на основе временных рядов или других, например выборочных, данных.

Кроме того, из-за сложностей методического, математического, вычислительного, информационного характера еще нс создана глобальная модель развития экономики, пригодная для всех уровней управления. Поэтому только создание и объединение различных типов эконометрических, балансовых и оптимизационных моделей в единую систему дают возможность комплексно описать взаимосвязи и тенденции развития производительных сил.

Эконометрические модели в их классическом виде относятся к бсс- критериальным. Их свойства позволяют успешно их использовать в качестве достаточно гибкого и эффективного инструмента прогнозирования экономических тенденций. Так, в них относительно просто, без существенной перестройки вносят широкий диапазон изменений и дополнений, что дает возможность последовательно повышать точность и адекватность отображения исследуемых процессов. Эконометрические модели достаточно абстрактны и допускают варьирование большим числом переменных. На их основе можно прогнозировать как характеристики эволюционного развития, так и параметры скачков.

Применение эконометрических моделей в прогнозировании началось во всех развитых странах с 1970-х гг. и приобрело такие масштабы, что сформировалась новая отрасль экономической науки — эконометрика (наряду с микро- и макроэкономикой). Можно сказать, что эконометрические модели являются основным инструментом анализа и прогноза национальной экономики, отдельных отраслей и регионов.

При разработке прогнозов создаются математические модели, переменные моделей определяются в рамках СПС, взаимосвязи переменных устанавливаются в виде тождеств и функциональных структурных уравнений. 11редваритсльно определяют вид уравнений, отражающих причинно-следственные связи между переменными, а затем с помощью эконометрических методов оцениваются параметры.

Получаемая таким образом эконометрическая модель описывает количественное изменение переменных, вызванное изменениями в других переменных, характеризующих экономическую политику и внешние условия функционирования экономической системы.

Модель позволяет определить значения переменных экономической политики, которые отражают желаемое изменение переменных

разрабатываемого плана. Модели включают экзогенные — внешние и эндогенные — внутренние переменные.

Параметры моделей разделяют на две группы. 11екоторые из них могут устанавливаться органами власти (например, ставки налогов) и называются параметрами экономической политики. Другие параметры уравнений моделей принято называть структурными.

Прогнозирование и планирование с помощью эконометрических моделей связаны с тем, что предсказываемые величины эндогенных переменных зависят от вводимых значений экзогенных переменных, поэтому различные величины экзогенных переменных порождают различные величины эндогенных переменных.

Количественные ошибки в экзогенных переменных и параметрах могут быть выявлены по расхождениям между величинами эндогенных переменных, рассчитанных с помощью модели, и их известными значениями. В случае заметных расхождений следует уточнить значения экзогенных переменных и параметров уравнений модели на основе новой информации. Таким образом, можно постоянно улучшать модель и совершенствовать проводимую экономическую политику.

В условиях кризисов и неустойчивости развития в моделях могут наблюдаться не только количественные ошибки. Изменение структуры и траектории развития экономической системы иногда приводит к необходимости изменения структуры и количества уравнений модели для обеспечения удовлетворительной точности прогнозов.

Cl 1C, как и система региональных счетов (СРС), основываясь на агрегировании экономических показателей, не охватывают всех деталей экономической реальности. В системе счетов находят отражение макроэкономические процессы и процессы, наблюдаемые в масштабах отраслей. В ней отражаются масштабные явления, происхождение которых относится к более или менее отдаленному прошлому и которые во многих случаях потеряли свою динамичность. В развитии могут наблюдаться менее масштабные факты — предвестники будущих тенденций.

Потому, особенно в условиях неустойчивого регионального развития, необходимо, е одной стороны, сокращать горизонты прогнозирования и планирования, основанного на применении национальных счетов и эконометрических моделей, а с другой — дополнять процедуры прогнозирования, планирования анализом ситуации и перспектив развития, используя экспертные методы, методы теории катастроф, выявления скрытых факторов.

Моделирование считается достаточно эффективным средством прогнозирования возможного явления новых или будущих технических средств и решений. Процесс разработки математических моделей экономических систем и их практического использования в прогнозировании разбивается на несколько этапов: постановка задачи моделирования и прогнозирования (содержательное описание исследуемых экономических процессов); разработка общей спецификации модели с выделением управляющих и выходных переменных; выбор класса моделей, определяющих возможные формы связи между переменными; идентификация параметров модели; системная проверка ее адекватности исследуемому процессу; проверка решений на математическую и содержательную непротиворечивость; формирование критериев, отражающих правили выбора решения проблемы из множества альтернативных вариантов; разработка необходимой информационной базы.

Каждый этап требует значительного объема аналитической и вычислительной работы с большими информационными массивами. Процесс разработки математических моделей усложняется также тем, что прохождение указанных этапов много итерационно — пока не будет достигнута приемлемая степень адекватности моделей исследуемым процессам.

В связи с этим на первый план выходит динамическое моделирование социально-экономического развития регионов, предполагающее автоматизацию процесса на базе современных информационных технологий, прежде всего компьютерных. Развитие этого технологического обеспечения привело к тому, что для решения даже рутинных, типовых региональных задач сегодня имеется множество программных продуктов.

Один из них — I think, предназначенный для разработки имитационных потоковых моделей поведения сложных систем и использующийся при анализе разнообразных ситуаций в сферах интенсивной деловой активности.

Подобные модели позволяют: формировать высокоуровневые описания, способствующие уточнению и более глубокому пониманию сущности функционирования сложных процессов и выявлению скрытых неточностей и семантических противоречий; имитировать поведение моделей с целью обнаружения нежелательных эффектов в прошлом и смягчения или полного предотвращения их влияния в будущем;

¦ в короткие сроки и и «полевых» условиях разрабатывать действующие прототипы для их дальнейшего использования в качестве формальных спецификаций фрагментов интегрированных корпоративных приложений.

Возможны расхождения прогнозных расчетов и реальных итогов развития регионов Российской Федерации, традиционно определяющих границы точности расчетов, поэтому любой прогноз развития многоотраслевых комплексов нуждается в верификации.

Эконометрические модели описываются функциями вида Y=f(Xj), где /, как правило, больше единицы, а в число /-го количества факторов, влияющих на функцию, не обязательно входит время как фактор. Количество факторов может быть и не больше единицы. Например, для первоначальных укрупненных расчетов довольно часто в моделях развития различных стран используется регрессионное уравнение, отражающее в краткосрочном прогнозе зависимость потребитель- ского спроса только от личного располагаемого дохода текущего года.

Разница между методом экстраполяции тренда и эконометрическим методом заключается в том, что последний дает возможность провести содержательный анализ зависимости исследуемого (прогнозируемого) показателя от какого-либо другого показателя, а экстраполяция тренда отражает только изменение изучаемого показателя во времени. Однако основное отличие заключается в том, что эконометрические модели позволяют разрабатывать варианты различия экономического объекта, во-первых, посредством изменений условий его функционирования (активное прогнозирование), приводящих к различным значениям эндогенных факторов, изменению трендов их пропорций и соотношений, и, во-вторых, путем варьирования значений экзогенных факторов, также отличных от тенденций их изменения во времени.

Таким образом, эконометрический метод можно отнести к комбинированным (комплексным). Эконометрическая модель может состоять из одного уравнения регрессии или из нескольких взаимосвязанных уравнений. 11о используются и модели, состоящие из системы независимых уравнений. Каждое уравнение решается самостоятельно, вне зависимости от других, но все они рассматриваются в рамках единой модели.

Кроме того, в эконометрических моделях, используемых на практике, применяются и трендовые связи: например, исследуемый показатель (У) ii период времени (() выражается как функция нс только от различных факторов (JQ, но и от значений этого показателя за ряд лет в прошлом:

У(0 =/(*,.х2, к,

11аряду с регрессионными уравнениями в эконометрические модели обычно включаются так называемые дифференциальные уравнения, или тождества. Например, объем производства моделируется но отраслям, а тождественное уравнение выводит общий объем производства (BI III или ВВП) как сумму объемов производства и услуг по отраслям.

Корреляционно-регрессионный анализ нс всегда адекватно отражает причинно-следственные связи явлений, которые к тому же изменяются во времени. Кроме того, сложность и неоднозначность интерпретации результатов, соблюдение необходимой точности прогнозов усложняют их применение в реальных расчетах.

Поэтому основными функциями лица, принимающего решение (ЛИР) о региональном развитии, являются: выбор анализируемого показателя и определение существенных факторов; выбор вида взаимосвязи (формы связи) между изучаемой величиной (функцией) и переменными (аргументами), наиболее полно отвечающей реальной связи; определение горизонта модели (долго-, средне- или краткосрочная); определение репрезентативной выборки: определение размерности задачи (количества факторов); определение степени агрегирования информации; проведение анализа точности исходной статистической информации, выявление наиболее характерных ошибок и влияния их на точность прогнозов; проведение качественного анализа прогнозируемого объекта, особенностей его динамики; экспертная корректировка как самой модели, так и экзогенных факторов.

Основные требования к эконометрической модели и к условиям их использования в целях прогнозирования следующие: адекватность формы связи; однозначность моделирования объекта.

Форма связи обычно задается самим ЛИР в зависимости от характера изменения (развития) изучаемого объекта. Кроме того, она может быть определена и программным путем. Желательно при этом свести модель к линейной форме и применять корреляционно-регрессионный анализ.

В эконометрических исследованиях регионального развития широко используется корреляционно-регрессионный анализ.

Регрессионные модели позволяют количественно оценить связи, зависимости и взаимную обусловленность экономических показателей. Модель может претендовать лишь на более или менее упрощенное отражение действительности, но она обеспечивает строго математический подход к исследованию сложившихся экономических взаимосвязей, к выяснению вопросов о существенности изучаемой зависимости, формы, в которой она проявляется, и т.д. Именно вследствие математической завершенности, количественной определенности своих характеристик модель не только служит средством анализа предшествующего экономического развития, но и становится важным инструментом прогнозных и плановых расчетов.

Примером возможного применения регрессионного анализа в экономике является исследование влияния на производительность труда и себестоимость таких факторов, как величина основных производственных фондов, заработная плата и др.

В общей форме прямолинейное уравнение регрессии имеет вид:

Наиболее распространенным способом расчета параметров уравнения регрессии является метод наименьших квадратов (МИК). Существует несколько модификаций данного метода: косвенный; двухшаговый; трехшаговый; метод максимального правдоподобия с полной информацией; метод максимального правдоподобия при ограниченной информации.

Для оценки достоверности прогноза используют среднюю относительную ошибку прогноза, /'-критерий Фишера, /-критерий Стыо- дента.

Корреляционно-регрессионный анализ является одним из основных элементов определения взаимосвязей между социально-экономическими явлениями и процессами и построением моделей этих связей. Именно поэтому регрессионные модели используются для моделирования на всех уровнях хозяйствования, в управлении всеми сферами деятельности и многими производственными ресурсами.

В эконометрических исследованиях различного уровня широко используется аппарат производственных функций (ПФ). Это функциональная модель сферы производства, независимые переменные которой принимают значения объемов затрачиваемых или используемых ресурсов (факторов производства), а зависимая переменная — значения объемов выпускаемой продукции. Другими словами, производственная функция определяет «выход» валового продукта (У) по данным о «входе» — производственным факторам (X).

Для моделирования отдельного региона или страны в целом (т.е. для решения задач на макроэкономическом, а также и на микроэкономическом уровне) часто используется ПФ Кобба — Дугласа (ПФКД), названная по имени двух американских экономистов, предложивших ее использовать в 1929 г. ПФКД активно применяется для решения разнообразных теоретических и прикладных задач благодаря своей структурной простоте. Это эконометрическое соотношение, согласно которому объем произведенного продукта зависит от основного капитала (объема инвестиций) и занятых в производстве трудовых ресурсов и растет при увеличении факторов производства. Эта функция имеет вид:

Функция вида (4.1) называется двухфакторной ПФ. От двухфакторных IIФ переходят к трехфакторным (например, вводя объемы используемых природных ресурсов). Если ПФ строится поданным временных рядов, то в качестве особого фактора роста производства можно использовать технический прогресс.

По своему содержанию производственные функции охватывают разные зависимости в сфере производства на различных уровнях — предприятия, объединения, отрасли, хозяйственного комплекса региона (страны). Чаще всего производственные функции применяются для анализа и прогнозирования параметров тех производственных систем, где условия производства и переработки продукции характеризуются технологической взаимозаменяемостью факторов и нелинейной зависимостью их расхода от масштабов производства, /[ля исследования производственных систем с такими характеристиками

обычно применяют мультипликативные ПФ. К этому классу принадлежит и ПФКД.

ПФ могут иметь разные области использования. Принцип «затраты — выпуск» может быть реализован как на микро-, так и на макроэкономическом уровне. 11а микроэкономическом уровне в роли производственной системы могут выступать предприятие (фирма), отрасль, межотраслевой производственный комплекс; на макроэкономическом — регион или страна в целом (точнее, хозяйственная система региона или страны). Микроэкономические и макроэкономические IIФ строятся и используются для решения задач анализа, планирования и прогнозирования.

Для измерения (или задания) прогресса воспользуемся способом, основанным на использовании семейства ПФ. в частности ПФКД с автономным темпом технического прогресса. В прикладном экономическом прогнозировании наибольшее применение имеют два тина ПФ: мультипликативная (чаще именуемая функцией Кобба — Дугласа) и функция с постоянной эластичностью заменяемости ресурсов (этот тип ПФ здесь не рассматривается). Эти функции обладают преимуществами с нескольких точек зрения: они хорошо экономически интерпретируются; имеют небольшое число параметров, что облегчает их статистическую оценку; соответствующие им показатели экономического роста, эффективности, интенсификации имеют удобную аналитическую форму.

ПФКД с автономным темпом технического прогресса является усовершенствованным вариантом приведенной выше двухфакторной модели и устраняет основной ее недостаток — двухфакторная производственная функция не учитывает в явном виде научно-технический уровень ироизводства.

При построении ПФ НТП может быть учтен с помощью введения множителя IГПI еgt;\ где параметр у (у gt; 0) характеризует темп прироста выпуска под влиянием I ГГП. ПФКД с автономным темпом технического прогресса имеет следующий вид:

Q = а х Lu х /Ср х еУ,

где t — время;

у параметр НТП.

Эта ПФ — простейший пример динамической ПФ. Она включает нейтральный, т.е. не материализованный в одном из факторов, технический прогресс.

Для прогнозирования ресурсов развития региона предлагается модифицированный вариант производственной функции Кобба — Дугласа с автономным темпом технического прогресса (МПФКД). В нем дифференцируется параметру на составные компоненты, характеризующие технический парк отрасли, уровень социального развития региона и уровень обеспеченности коммуникациями. Такой подход позволяет выявить степень влияния на объем производства как технических факторов, так и социальных и информационных: Q=a0x La х КР х е(п'г¦+ +

где параметр у представляется как комплексная функция у - f (2х, z2,23);

2\              показатель, характеризуют,ий уронень социальиого разнития;

22 показатель, характеризующий технический парк отрасли; определяется как функция уровня обновления основных производственных фондов;

2;з показатель, характеризующий уровень обеспеченности современными коммуникационными средствам и; а\,(12,аз числовые коэффициенты.

Использование регрессионных моделей в моделировании социально-экономических объектов и процессов осуществляется по многим направлениям в зависимости от вида применяемых функций.

Парная линейная регрессия используется при изучении функции потребления. Среди класса нелинейных функций следует назвать рав-

Ь

постороннюю гиперболу */ = « + —, которая используется для характеристики многих видов связей. Например, связи удельных расходов сырья, материалов, топлива с объемом выпускаемой продукции, времени обращения товаров от величины товарооборота как на микро-, гак и на макроуровне.

Классическим ее примером является кривая Филипса, характеризующая нелинейное соотношение между нормой безработицы х и процентом прироста заработной платы у\

I)

у = ал              ь г.

х

Английский экономист А.В. Филипс, анализируя данные более чем за столетний период, в конце 1950-х гг. установил обратную зависимость процента прироста заработной платы от уровня безработицы.

В 30-х гг. XX в. Дж. М. Кейнс сформулировал гипотезу потребительской функции 11 в|. С того времени исследователи неоднократно обращались к проблеме ее совершенствования, и эконометрические модели все чаще стали использоваться в РМ. 

<< | >>
Источник: Харченко Е.В.. Государственное регулирование национальной экономики : учебное пособие. 2011

Еще по теме ИСПОЛЬЗОВАНИЕ В ПРОГНОЗИРОВАНИИ РЕГИОНАЛЬНОГО РАЗВИТИЯ ЭКОНОМЕТРИЧЕСКИХ МОДЕЛЕЙ:

  1. ЭКОНОМЕТРИЧЕСКИЕ МОДЕЛИ РАЗВИТИЯ РЕГИОНАЛЬНОЙ ЭКОНОМИКИ
  2. Эконометрические модели в прогнозировании
  3. 1.2.1.1. Балансово-эконометрические модели долгосрочного прогнозирования, основанные на системах одновременных уравнений
  4. 6.3. Опыт разработки эконометрических моделей в системе прогнозирования Японии
  5. Прогнозирование и программирование развития персонала регионального и муниципального управления
  6. 2.1. Особенности эконометрических методов прогнозирования
  7. 1.2.4. Сравнение различных типов моделей (вычислимых моделей общего равновесия и эконометрических моделей) и возможности совмещения различных подходов
  8. МАКРОЭКОНОМИЧЕСКИЙ АНАЛИЗ И ПРОГНОЗИРОВАНИЕ ОТРАСЛЕВОГО И РЕГИОНАЛЬНОГО РАЗВИТИЯ НА ОСНОВЕ СОЧЕТАНИЯ БАЛАНСА НАРОДНОГО ХОЗЯЙСТВА И СИСТЕМЫ НАЦИОНАЛЬНЫХ СЧЕТОВ
  9. Факторные модели прогнозирования стратегического развития
  10. 1.2.4.2. Преимущества эконометрических моделей
  11. 3| Эконометрические модели с несколькими переменными 
  12. 2.5. Эконометрические модели и их оценивание
  13. 3.3. КЛАССИФИКАЦИЯ ЭКОНОМЕТРИЧЕСКИХ МОДЕЛЕЙ ФИНАНСОВЫХ ПЕРЕМЕННЫХ
  14. В. ПОСТРОЕНИЕ ЭКОНОМЕТРИЧЕСКОЙ МОДЕЛИ
  15. Глава 32 ИСПОЛЬЗОВАНИЕ ПЛАТЕЖНОГО БАЛАНСА СТРАНЫ ДЛЯ ОЦЕНКИ СОСТОЯНИЯ ЭКОНОМИКИ И ПРОГНОЗИРОВАНИЯ ЕЕ РАЗВИТИЯ С ТОЧКИ ЗРЕНИЯ ЗАЩИТЫ НАЦИОНАЛЬНЫХ ИНТЕРЕСОВ
  16. Научные основы регионального развития и принципы региональной политики
  17. 1.1.1. Балансово-эконометрические модели долгосрочной технологической и отраслевой динамики
  18. 13.6. Направления развития региональных кластеров Кластеры – приоритет регионального развития
  19. 4.4 Моделирование ограничений развития по использованию первичных ресурсов на базе модели RIM с встроенным блоком производственных функций.
- Бюджетная система - Внешнеэкономическая деятельность - Государственное регулирование экономики - Инновационная экономика - Институциональная экономика - Институциональная экономическая теория - Информационные системы в экономике - Информационные технологии в экономике - История мировой экономики - История экономических учений - Кризисная экономика - Логистика - Макроэкономика (учебник) - Математические методы и моделирование в экономике - Международные экономические отношения - Микроэкономика - Мировая экономика - Налоги и налолгообложение - Основы коммерческой деятельности - Отраслевая экономика - Оценочная деятельность - Планирование и контроль на предприятии - Политэкономия - Региональная и национальная экономика - Российская экономика - Системы технологий - Страхование - Товароведение - Торговое дело - Философия экономики - Финансовое планирование и прогнозирование - Ценообразование - Экономика зарубежных стран - Экономика и управление народным хозяйством - Экономика машиностроения - Экономика общественного сектора - Экономика отраслевых рынков - Экономика полезных ископаемых - Экономика предприятий - Экономика природных ресурсов - Экономика природопользования - Экономика сельского хозяйства - Экономика таможенного дел - Экономика транспорта - Экономика труда - Экономика туризма - Экономическая история - Экономическая публицистика - Экономическая социология - Экономическая статистика - Экономическая теория - Экономический анализ - Эффективность производства -