<<
>>

МЕТОДЫ ВХОДА, РАССМОТРЕННЫЕ В ЭТОЙ КНИГЕ

Эта часть книги рассматривает методы входа в рынок. Как известно, существует бесчисленное множество таких методов — следующие за трендом и противотрендовые, основанные на ценовых данных и опирающиеся на внешние по отношению к рынку явления, традиционные и экзотические, простейшие и чрезвычайно сложные.
К сожалению, недостаток места заставляет нас сузить круг и рассматривать только часть возможностей. Мы постараемся пояснить популярные методы, используемые часто и на протяжении долгого времени (некоторые — десятилетиями), но мало поддержанные объективными доказательствами. Мы будем систематически тестировать эти модели для проверки их эффективности. Мы также попытались расширить наши исследования моделей входа, вызвавшие интерес у читателей (в основном, читателей журнала Technical Analysis of Stocks and Commodities).

Пробои и скользящие средние

Традиционные, следующие за трендом модели, использующие пробои и скользящие средние, рассмотрены в гл. 5 и 6 соответственно. Входы при пробое просты и интуитивно привлекательны: покупка производится, когда цена пробивает верхнюю границу некоторого ценового диапазона. Продажа или открытие короткой позиции производится, когда рынок пробивает нижний порог или границу. Таким образом, входы при пробое обеспечивают трейдеру участие в любом крупном движении рынка или тренде. Входы, основанные на следовании за трендом, а именно на пробое, лежат в основе многих популярных систем. Модели, основанные на

ВВЕДЕНИЕ

93

пробое, отличаются друг от друга главным образом тем, как определяются границы ценовых диапазонов и как организован вход в рынок.

Подобно пробоям, скользящие средние привлекательны в своей простоте и чрезвычайно популярны среди технических трейдеров. Входы могут генерироваться с использованием скользящих средних различным образом: в рынок можно входить, когда цена пересекает скользящую среднюю вверх; когда быстрая средняя пересекает медленную; когда наклон скользящей средней меняет направление или когда цены взаимодействуют со скользящей средней, как с уровнями поддержки/сопротивления.

Кроме того, разнообразия добавляет существование простых, экспоненциальных, взвешенных и многих других скользящих средних. Поскольку модели входа часто используют те или иные варианты пробоев или скользящих средних, эти методы важно рассмотреть в подробностях.

Осцилляторы

Осцилляторы — это индикаторы, которые дают квазициклические колебания в некоторых пределах. Они весьма популярны у трейдеров и включены в большинство пакетов построения графиков. Модели входа, основанные на осцилляторах, так же как и модели пробоев и скользящих средних, по природе своей «внутренние», т.е. не требуют ничего, кроме рыночных данных, и достаточно просты в создании. При этом модели пробоев и скользящих средних часто генерируют запаздывающие сигналы, поскольку они реагируют на поведение рынка, а не предсказывают его. Основная особенность осцилляторов состоит в том, что они предсказывают изменения цены путем идентификации поворотных точек и пытаются войти в рынок до начала его движения, а не после. В связи с этим большинство осцилляторных систем являются противотрендовыми.

Сигнал к входу обычно возникает при расхождении между движением графика осциллятора и цены. Расхождение наблюдается, когда цены достигают нового минимума, а осциллятор при этом не опускается ниже своих предыдущих минимумов, что является сигналом к покупке; или же цены образуют новый максимум, а осциллятор не достигает своего предыдущего максимума, что служит сигналом к продаже или к открытию короткой позиции.

Еще одним способом генерировать входы является сигнальная линия. Она рассчитывается как скользящая средняя осциллятора. Трейдер покупает, когда осциллятор пересекает сигнальную линию вверх, и открывает короткую позицию, когда он пересекает линию вниз. Хотя осцилляторы обычно используются в противотрендовых системах для торговли внутри ограниченного ценового диапазона, иногда их применяют и для следования за трендом: длинные или короткие позиции можно занимать, когда стохастический осциллятор превышает уровень 80 или опускается

94

ЧАСТЬ II ИССЛЕДОВАНИЕ входов в РЫНОК

ниже 20.

Модели, основанные на таких классических осцилляторах, как стохастический осциллятор Лэйна, RSI Вильямса и MACD Аппеля, рассмотрены в гл. 7.

Сезонность

Гл. 8 рассматривает сезонность, которую каждый трейдер понимает по-своему. В нашем понимании сезонность определяется как циклические или повторные явления, которые устойчиво связаны с календарем, а именно рыночные явления, на которые влияет дата или время года. Поскольку природа таких систем прогностическая (сигналы получаются за недели, месяцы и даже годы вперед), эти модели по своей природе противотрен-довые. Из многих способов определения наилучшего времени входа в рынок с использованием сезонных ритмов мы рассмотрим два основных — скорость изменения цены и пересечение. Кроме того, будут исследованы некоторые дополнительные правила, в частности правила подтверждения исходных сигналов.

Лунные и солнечные явления

Влияют ли на рынок лунные и солнечные явления? Можно ли создать модель, основанную на изменениях цен под таким влиянием? Роль Луны в создании приливов неоспорима. Фазы луны коррелируют с осадками и некоторыми биологическими ритмами, они влияют на время посадки растений в сельском хозяйстве. Солнечные явления — вспышки и пятна — также влияют на различные события на Земле. В периоды высокой солнечной активности возможны магнитные бури, способные повлиять на энергосистемы, вызывая серьезные перебои с электроэнергией. Не так уж невероятно представить, что солнечные и лунные явления влияют на рынки, но как можно использовать эти влияния для создания прогностических входов против тренда?

Рассмотрим лунный цикл. Несложно создать модель, которая входила бы в рынок на определенный день до или после новолуния или полнолуния. То же самое применимо и к солнечной активности: вход может активироваться, когда количество солнечных пятен поднимается или опускается выше некоторого значения. Можно рассчитывать скользящие средние солнечной активности и их пересечения для управления входами. Лунные циклы, солнечные пятна и другие планетарные явления могут иметь реальное, хотя и небольшое влияние на рынки, и это влияние может приносить прибыль при использовании должным образом сконструированной модели входа.

Действительно ли лунные и солнечные явления оказывают такое влияние на рынок, что проницательный трейдер мог бы извлечь из них прибыль, — вопрос для эмпирического исследования (см. гл. 9).

ВВЕДЕНИЕ

95

Циклы и ритмы

В гл. 10 исследуются циклы и ритмы как метод определения момента входа в рынок. Идея использования циклов на рынке в основе проста: экстраполируйте наблюдаемые циклы в будущее и попытайтесь покупать на минимумах циклов и продавать в короткой позиции на максимумах. Если циклы достаточно устойчивы и четко определены, то подобная система будет работать с большой прибылью. Если нет, то результаты входов будут плохими.

Очень долгое время трейдеры занимались визуальным анализом циклов при помощи графиков, которые строились вручную на бумаге, а в последнее время — с помощью компьютерных программ. Хотя циклы можно анализировать визуально, в программах не так сложно реализовать алгоритмы определения и анализа циклов. В анализе циклов полезны разнообразные алгоритмы — от подсчета баров между максимумом и минимумом до быстрых преобразований Фурье (FFT) и спектрального анализа методом максимальной энтропии (MESA). Правильное использование таких алгоритмов — уже нешуточная задача, но на основе надежных программ для анализа циклов можно строить объективные циклические модели входа и тестировать их на исторических данных.

Природа рыночных циклов весьма разнообразна. Некоторые циклы вызываются внешними по отношению к рынку причинами, природными или общественными. Сезонные ритмы, эффекты праздников и циклы, связанные с периодическим событиями (например, с президентскими выборами или опубликованием экономических отчетов), относятся к экзогенным (внешним). Их лучше анализировать методами, принимающими во внимание время действия влияющих факторов. Другие циклы эндогенны — их внешние движущие причины неясны, и для анализа не требуется ничего, кроме рыночных данных. Пример эндогенного цикла наблюдается порой в котировках S&P 500 трехдневного цикла или в 8-минутных тиковых данных этого же символа.

Программы, основанные на частотных фильтрах (Katz, McCormic, май 1997) и на методе максимальной энтропии (например, MESA96 и TradeCycles), хороши для поиска эндогенных циклов.

Мы уже обсуждали экзогенные сезонные циклы, а также лунные и солнечные ритмы. В гл. 10 исследуются эндогенные циклы при помощи специализированного волнового фильтра.

Нейронные сети

Как обсуждается в гл. 11, нейронные сети — это специальная технология искусственного интеллекта (AI), возникшая из попыток эмуляции информационных процессов, происходящих в живых организмах. Нейронные сети — это компоненты, которые способны к обучению и полезны при

96

ЧАСТЬ II ИССЛЕДОВАНИЕ входов в РЫНОК

построении моделей, классификации и прогнозировании. Они могут работать с оценками вероятности в неопределенных ситуациях и с «нечеткими» моделями, т.е. с заметными глазом, но с трудом определимыми с помощью четких правил. Сети могут использоваться для прямого обнаружения точек разворота или предсказания изменений цен. Их также можно использовать для критического обзора сигналов, полученных от других моделей. Кроме того, технологии нейронных сетей могут помогать интегрировать информацию от эндогенных (например, прошлые цены) и экзогенных источников (личные мнения, сезонные данные, влияние других рынков). Нейронные сети могут быть обучены определять визуально различимые модели на графиках и служить в качестве блоков распознавания моделей в составе систем, основанных на традиционных правилах (Katz, McCormic, ноябрь 1997).

Правила входа, полученные генетическими методами

В гл. 12 приведено исследование Каца и МакКормик (Katz, McCormic, декабрь 1996), демонстрирующее, что при помощи генетической эволюции можно создавать стабильные и прибыльные модели входа, основанные на правилах. Процесс состоит в составлении набора «шаблонов правил» и применении генетического алгоритма для их сочетания в целях создания выгодных входов. Эта методика позволяет обнаружить удивительные сочетания правил, включающие и эндогенные, и экзогенные переменные, традиционные индикаторы и даже нетрадиционные (например, нейронные) элементы для образования мощных правил входов. Эволюционное построение моделей — один из самых передовых, продвинутых и необычных методов, доступных для разработчика торговых систем.

<< | >>
Источник: Джеффри Оуэн Кац, Донна Л. МакКормик . Энциклопедия торговых стратегий / Пер, с англ. — М.: Альпина Паблишер. — 400 с. . 2002

Еще по теме МЕТОДЫ ВХОДА, РАССМОТРЕННЫЕ В ЭТОЙ КНИГЕ:

  1. СИМУЛЯТОРЫ, ИСПОЛЬЗОВАННЫЕ В ЭТОЙ КНИГЕ
  2. Основные вопросы, рассмотренные в этой главе
  3. ПОДГОТОВКА К РАССМОТРЕНИЮ И РАССМОТРЕНИЕ ДЕЛА
  4. Рекомендации по использованию рассмотренных в учебном пособии методов, инструментов и методологий
  5. Определение эффективности входа и выхода Определение эффективности входа
  6. СТРУКТУРА И ОРГАНИЗАЦИЯ ЭТОЙ КНИГИ
  7. ХАРАКТЕР И ЗНАЧЕНИЕ ЭТОЙ РАБОТЫ
  8. Соглашения, принятые в книге
  9. 9.3.2. Отражение в книге продаж восстановленных сумм НДС
  10. Указатель произведений, упомянутых в книге
  11. Действуй, как сказано в этом книге
  12. Барьеры для входа
  13. Отзывы о книге «Выигрывает тот, кто делает больше ошибок»
  14. РАЗВИТИЕ МОДЕЛЕЙ ВХОДА, ОСНОВАННЫХ НА ПРАВИЛАХ
  15. Глава 48 Определение точек входа и минимизация рисков
  16. 9.7. Способы входа на иностранный рынок
  17. ЭВОЛЮЦИОННЫЙ ПОИСК МОДЕЛИ ВХОДА
  18. ПОЛУЧЕНИЕ СИГНАЛОВ ВХОДА ПРИ ПОМОЩИ ОСЦИЛЛЯТОРОВ
  19. 5.1 НЕСОВЕРШЕННАЯ КОНКУРЕНЦИЯ И БАРЬЕРЫ ДЛЯ ВХОДА В ОТРАСЛЬ