<<
>>

КАК ДОСТИЧЬ УСПЕХА ПРИ ОПТИМИЗАЦИИ

Во избежании провала и для увеличения вероятности успеха при оптимизации следует предпринять четыре шага. Во-первых, оптимизировать систему на максимально доступном представительном образце данных и использовать для анализа большое число виртуальных сделок.
Во-вторых, использовать небольшое количество параметров (особенно с учетом размера выборки данных). В-третьих, провести тестирование на данных вне выборки, т.е. на данных, которые вы не использовали при оптимизации и, более того, не видели в глаза. В-четвертых, стоит провести оценку статистической значимости результатов.

Большие представительные выборки

Как было сказано выше, неудача часто возникает благодаря некорректности задачи, поставленной перед оптимизатором. Следовательно, успех вероятен в случае нахождения правильного решения корректной задачи. Можно заключить, что торговые модели следует оптимизировать на данных из ближайшего будущего. К сожалению, авторам книги неизвестен способ получения таких данных.

ГЛАВА 3 ОПТИМИЗАТОРЫ и ОПТИМИЗАЦИЯ

63

Поскольку будущее еще не наступило, нельзя дать оптимизатору ту задачу, которую предстоит решать системе в процессе реальной торговли. Следовательно, требуется дать оптимизатору задание, решение которого было бы применимо к реальной торговле с максимальной степенью приближенности. Один из способов достичь этого состоит в том, чтобы использовать данные из прошлого, включающие характеристики, которых можно ожидать в будущем, т.е. бычьи и медвежьи периоды, периоды с трендами и без них и даже обвалы цен. Кроме того, данные должны быть максимально свежими для отражения текущих процессов на рынке. Такую выборку можно считать представительной.

Помимо репрезентативности выборка должна быть достаточно велика. Большие выборки снижают вероятность возникновения артефактов или случайных результатов системы при оптимизации. Эффективность торговой системы, оптимизированной на большой выборке, не будет сильно отличаться от ее эффективности в реальной торговле.

Впрочем, иногда приходится делать выбор между размером выборки и степенью ее репрезентативности.

Увеличение размера выборки приводит к использованию старых ценовых данных, значимость которых для представления современного состояния рынка весьма сомнительна. В некоторых случаях существует четкая грань, за которой данные теряют значимость. Например, фьючерсы на индекс S&P 500 начали обращение на рынке в 1983 г., что оказало структурное влияние на рынок в целом. Это наблюдение становится менее важным при работе с внутридневной ценовой историей, где за относительно короткий период времени можно собрать данные о десятках и сотнях тысяч баров, не углубляясь в прошлое слишком далеко.

В конце напоминаем, что при проведении оптимизаций и тестов следует учитывать количество сделок, проведенных системой. Как и объем выборок данных, количество сделок для достоверности должно быть значительным. Если система совершает всего несколько сделок, то, несмотря на количество точек данных в выборке, результат может оказаться следствием случайностей или артефактов!

Минимум правил и параметров

Для достижения успеха следует ограничивать число оптимизируемых правил и параметров, особенно при работе на небольших выборках данных. Чем меньше правил и параметров, тем больше вероятность устойчивой эффективности решений как на материале выборки, так и за ее пределами. Хотя при работе с несколькими тысячами сделок (1 год S&P 500 содержит примерно 100 000 одноминутных баров) можно оптимизировать несколько десятков параметров, при использовании данных на конец дня за несколько лет даже два-три параметра могут оказаться излишними. Если

64

ЧАСТЬ I РАБОЧИЕ ИНСТРУМЕНТЫ

данная модель требует оптимизации многих параметров, то следует приложить усилия к сбору колоссального объема данных. Легендарный Ганн, как говорят, собрал данные по цене на пшеницу за тысячу лет. При невозможности использовать большие объемы данных следует проводить оптимизацию системы на портфеле нескольких финансовых инструментов с использованием одних и тех же правил и параметров на всех рынках — эта методика широко использована в данной книге.

Подтверждение результатов

После оптимизации правил и параметров торговой системы и получения хорошей эффективности на выборке данных важно так или иначе подтвердить эффективность этой системы, прежде чем рисковать реальными деньгами.

Подтверждение дает трейдеру еще один шанс отказаться от неудачного решения. От систем, которые не подтвердили себя, следует отказываться, а использовать лишь подтвержденные. Подтверждение — критический шаг на дороге к успеху при оптимизации и при любом методе совершенствования работы торговой системы.

Для гарантии успеха любое решение следует подтверждать тестами на данных вне выборки или статистическим анализом, но предпочтительно — обоими методами. Отбросьте любое решение, которое не будет прибыльным в тесте на данных, не входящих в первоначальную выборку, — при реальной торговле оно, скорей всего, провалится. Рассчитывайте статистическую значимость всех тестов — и в пределах выборки данных, и вне ее. Оценка статистической значимости показывает вероятность того, что пригодность системы на выборке данных соответствует ее пригодности в других условиях, включая реальную торговлю. Статистический анализ работает по принципу распределения вероятностей прибылей в сделках, совершаемых системой. Используйте только статистические методы, скорректированные для множественных тестов, когда анализируете результаты тестов в пределах выборки. Тесты вне пределов выборки следует оценивать стандартными, некорректированными методами. Подобные отчеты приводились в главе, посвященной симуляторам. Займитесь изучением статистики; это улучшит ваши трейдерские качества.

Некоторые советуют проверять модель на чувствительность к малым изменениям параметров. Модель, которая мало чувствительна к таким изменениям, считается «высоконадежной». Не обращайте на подобные заявления слишком много внимания. Фактически, устойчивость к изменению параметров не может служить показателем надежности системы. Многие чрезвычайно надежные модели весьма чувствительны к изменениям некоторых параметров. Единственно достоверный показатель надежности системы — статистика, в особенности результаты тестов на данных вне пределов выборки.

ГЛАВА 3 ОПТИМИЗАТОРЫ и ОПТИМИЗАЦИЯ

65

<< | >>
Источник: Джеффри Оуэн Кац, Донна Л. МакКормик . Энциклопедия торговых стратегий / Пер, с англ. — М.: Альпина Паблишер. — 400 с. . 2002

Еще по теме КАК ДОСТИЧЬ УСПЕХА ПРИ ОПТИМИЗАЦИИ:

  1. Глава 2 Поверхностное мышление: почему большинству людей так сложно достичь успеха на рынке
  2. КАК ПОТЕРПЕТЬ НЕУДАЧУ ПРИ ОПТИМИЗАЦИИ
  3. Как обеспечить успех, огромный, как африканский слон
  4. 2 Оптимизация фондового портфеля при инвестировании в ПАЕВЫЙ ИНВЕСТИЦИОННЫЙ ФОНДы
  5. 7.1. Оптимизация налогов при переходе на упрощенную систему налогообложения
  6. 5.3.3. Оптимизация структуры портфеля при возможности безрискового кредитования и заимствования
  7. Как измерить успех?
  8. ЧЕГО ВЫ ХОТИТЕ ДОСТИЧЬ
  9. КАК ДОБИТЬСЯ УСПЕХА
  10. КАК ДОБИТЬСЯ УСПЕХА
  11. КАК СДЕЛАТЬ УСПЕХ "АВТОМАГИЧЕСКИМ"
  12. Представить себя, как модель успеха
  13. ГЛАВА VII ПОСЛЕДНЕЕ НАПУТСТВИЕ: КАК ДОБИТЬСЯ УСПЕХА