>>

1.1. Системы

По своему построению вся вселенная состоит из множества систем, каждая из которых содержится в более масштабной системе. Термин «система» греческого происхождения и означает целое, составленное из отдельных частей.

В настоящее время существует достаточно большое количество определений «система». Определения «система» изложены в работах Л. фон Берталанфи, А. Холла, У. Гослинга, Р. Акоффа, К. Уотта и других. Например, по Л. фон Берталанфи, система – комплекс элементов, находящихся во взаимодействии [6], по А. Холлу система представляет собой множество объектов вместе с отношениями между объектами и между их атрибутами [8]. У. Гослинг под системой понимает собрание простых частей [7]. В соответствии с понятием Р. Акоффа система представляет собой любую сущность, которая состоит из взаимосвязанных частей [1]. Наиболее близким понятием, относящимся к информационным системам, следует отнести определение К. Уотта, который считает, что система – это взаимодействующий информационный комплекс, характеризующийся многими причинно-следственными взаимодействиями [9].

Из приведенных определений можно выявить общие моменты, которые присущи понятию «система» и при дальнейших исследованиях рассматривать ее как целенаправленный комплекс взаимосвязанных элементов любой природы и отношений между ними. Обязательное существование целей определяет общие для всех элементов целенаправленные правила взаимосвязей, обуславливающие целенаправленность системы в целом. С точки зрения математики определение системы можно условно сопоставить с определением множества. Так, по Г. Кантору, множество является объединением в одно целое объектов, хорошо различимых нашей интуицией или мыслью. Н. Бурбаки считает, что множество образуется из элементов, которые обладают некоторыми свойствами и находятся в некоторых отношениях между собой или с элементами других множеств.

Исходя из этого, можно сделать вывод, что для математического описания системы можно использовать аппарат теории множеств. Тогда систему S можно представить следующим образом:

где   – функция перехода;

   – множество элементов, входящих в систему;

   – множество элементов, выходящих из системы.

Множества X и Y являются конечными, так как определяют некоторую систему, выделенную из реальной жизни и дискретную по своей сущности. Поэтому S = ?{X,Y} можно рассматривать как граф, что позволяет возможность использования для описания таких систем теории графов. Любая система может быть представлена в виде графа, вершинами которого являются элементы системы, а ребрами – отношения между ними.

Схемное построение системы, с ее внешней и внутренней средой, приведено на рис. 1.1 (9 стр.). При исследовании систем одним из важных условий является определение следующих понятий:

•    информация;

•    информационные ресурсы;

•    элементы;

•    подсистемы;

•    связи;

•    информационные ресурсы внешней среды;

•    информационные ресурсы внутренней среды;

•    структура;

•    функция;

•    целевая функция.

Информация. Информация – это сведения, сообщения, знания, флюиды, данные, которыми обмениваются люди, люди и технические устройства, технические устройства между собой; обмен сигналами в животном и растительном мире, с космическим пространством; передача признаков от клетки к клетке, от организма к организму. Понятие «информация» состоит из двух аспектов: содержательного и материального. Содержательный, или смысловой, аспект информации состоит в наличии определенных знаний, сведений, сообщений, данных или осведомленности о состоянии внешней и внутренней среды системы.

Материальный аспект связан с тем, что передача и хранение информации требует материальных носителей, на которых она фиксируется и затем передается. Как введение понятия «энергия» позволило рассматривать все явления природы с единой точки зрения, так и введение понятия «информация» позволяет подойти с единой точки зрения к изучению процессов взаимодействия явлений в природе. Информация никогда не создается. Она только принимается и передается, но при этом может утрачиваться и исчезать.

Информационные ресурсы. Информационные ресурсы представляют собой знания, сведения, данные, полученные в результате развития науки и практической деятельности людей, используемые в общественном производстве и управлении как фактор повышения эффективности производства. Они представляют собой по содержанию отображение естественных и общественных процессов и явлений, зафиксированных в результатах научных исследований, проектно-конструкторских разработок, учетно-статистических данных, нормативных, плановых, методических материалах и т. п. В форме понятий, суждений и сложных моделях действительности.

Элементы. Элемент – неделимая часть системы. Дальнейшее деление элемента приводит к разрушению его функциональных связей с другими элементами и получению свойств выделенной совокупности, не адекватной свойствам элемента как целого.

Рис. 1.1. Схема построения системы и ее взаимосвязь с внешней средой

Подсистемы. Подсистема – выделенное по определенным правилам и признакам целенаправленное подмножество взаимосвязанных элементов любой природы. Каждую подсистему в свою очередь можно разделить на еще более мелкие подсистемы. Системы отличаются от подсистем только лишь правилом и признаками объединения элементов. Для системы правило является более общим, а для подсистемы – более индивидуальным. Исходя из этого можно сделать вывод, что система представляет собой нечто целое, состоящее из подсистем, каждую из которых можно рассматривать как самостоятельную систему.

В то же время любая система является подсистемой некоторой более большой системы.

Подсистемы, выделенные на одной горизонтальной линии, являются подсистемами одного уровня. Деление системы на подсистемы разного уровня называют иерархией (от греч. hieros – священный и arche – власть), что означает порядок подчинения более низких звеньев системы более высоким. При иерархическом построении системы в целях наиболее эффективного достижения цели должно всегда соблюдаться основное правило, заключающееся в том, что подсистема более низкого уровня должна подчиняться подсистеме более высокого уровня.

Любая подсистема является, с одной стороны, самостоятельной системой, а с другой – подсистемой системы более высокого уровня, что приводит к двум подходам исследования систем. Это макроуровень и микроуровень.

Исследование систем как целого на так называемом макроуровне связано с тем, что основное внимание уделяется изучению взаимодействия системы с внешней средой. В этом случае элементы системы рассматриваются с точки зрения организации их в единое целое и влияния на функционирование системы в целом. При исследовании системы на микроуровне основными являются характеристики внутренней среды, определяемые взаимодействием элементов этой среды между собой и выполняющие определенные действия.

В целях более объективного исследования систем необходимо сочетание двух подходов. Обычно считается более целесообразным начинать изучение систем с макроуровня, а затем исследовать микроуровень. Тем не менее иногда может оказаться более рациональным подход, когда исследование системы начинается на микроуровне.

Связи. Связи – это то, что соединяет элементы и свойства системы в единое целое. Любая связь между какими-либо двумя элементами в соответствии с ее направленностью от одного элемента к другому является выходом первого из них и в то же время входом второго. Связи между подсистемами одного и того же уровня называются горизонтальными, а связи системы со всеми подсистемами соподчиненных иерархических уровней – вертикальными.

Для каждой системы связи со всеми подсистемами и между ними называются внутренними, а все остальные связи – внешними. Взаимодействие системы с внешней средой осуществляется с помощью целенаправленных связей.

Информационные ресурсы внешней среды. Информационные ресурсы внешней среды – множество элементов любой природы, существующие вне системы и оказывающих на нее влияние. Для того, чтобы элементы внешней среды могли влиять на систему или испытывать ее воздействие, необходимы связи. В любой системе число всех существующих внешних взаимосвязей очень велико. Исследовать абсолютно все связи практически невозможно. Поэтому их число приходится ограничивать. Задача исследователей состоит в том, чтобы определить с учетом возможностей Интернет из множества существующих взаимосвязей с внешней средой такие, которые в значительной степени влияют на систему.

Информационные ресурсы внутренней среды. Это ситуационные факторы между элементами во внутренней среде системы определенной природы. В организациях, создаваемых людьми, элементы во внутренней среде являются результатом управленческих решений и постоянно меняются под влиянием внешней среды. Основными переменными во внутренней среде организаций, требующих внимания руководства, являются цели, структура, функции, связи, технические средства, технологии и люди.

Структура. Структура – совокупность связей между элементами системы, отражающих их взаимодействие (от лат. structura – строение, порядок). У каждой подсистемы определенного уровня существуют соподчиненные подсистемы либо непосредственно, либо через промежуточные подсистемы. Множество подсистем, которые стоят ниже и подчинены данной системе, называют ее вертикалью.

Функции. Функция – целенаправленный набор действий, операций или процедур (от англ. function – обязанности, действия). Функции системы обычно представляются в виде набора некоторых преобразований, которые, как правило, делятся на две группы. Первая группа функций связана с преобразованием входов в систему.

Это значит, что при определенном наборе значений входных данных осуществляется такое преобразование, при котором система придет в состояние, характеризуемое набором некоторых внутренних ее параметров. Вторая группа преобразований связывает состояние системы с ее выходами. При определенном наборе значений внутренних параметров преобразования обеспечивают некоторый набор значений выходных параметров. С точки зрения внешней среды функции системы заключаются в том, что при определенном наборе значений входных параметров выходные параметры принимают соответствующие этому набору значения. Задача специалистов, занимающихся исследованием систем, заключается в определении содержания множеств элементов на входе в систему, зависимостей между ними и возможных преобразований входных данных во внутренней среде системы.

Целевая функция. Функция в экстремальных задачах, минимум или максимум которой необходимо найти, называется целевой. Экстремальному значению целевой функции обычно соответствует оптимальное решение. Различают линейные, нелинейные, выпуклые и другие целевые функции. В том случае, если допустимое множество экстремальной задачи есть пространство функций, тогда используют термин «целевой функционал».

| >>
Источник: Мыльник В.В., Титаренко Б.П., Волочиенко В.А.. Исследование систем управления: Учебное пособие для вузов. – 2-е изд., перераб. и доп. 2003

Еще по теме 1.1. Системы:

  1. §95. На всем протяжении серии переключений от системы к системе (при условии, что системы являются однопродуктовыми) повышению нормы прибыли соответствует снижение заработной платы
  2. Понятие, элементы и уровни экономической системы. Малые и большие системы. Экономическая система общества
  3. разработка проблем структуры экономической систем: система категорий политической экономии социализма как ключ к структуре экономических систем
  4. КРИЗИС АДМИНИСТРАТИВНО-ПЛАНОВОЙ СИСТЕМЫ И НЕОБХОДИМОСТЬ ПЕРЕХОДА К РЫНОЧНОЙ СИСТЕМЕ
  5. ПЕРЕХОД КАК ЭТАП ТРАНСФОРМАЦИИ ЭКОНОМИЧЕСКОЙ СИСТЕМЫ. КРИЗИС АДМИНИСТРАТИВНО' КОМАНДНОЙ СИСТЕМЫ
  6. глава 15 ДЕНЕЖНО-КРЕДИТНАЯ СИСТЕМА И ЕЕ ВЗАИМОСВЯЗЬ С ФИНАНСОВОЙ СИСТЕМОЙ
  7. 3.1. Экономика: «периодическая система» элементов (к вопросу о структуризации и типологизации экономических систем)
  8. МОДЕЛЬ ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКОЙ СИСТЕМЫ ОРГАНИЗАЦИИ (ПРЕДПРИЯТИЯ) И ПОНЯТИЕ «СИСТЕМА УПРАВЛЕНИЯ»
  9. Формирование системы налогового контроля как искусственной организационно-управленческой системы
  10. 3. Структура финансовой системы. Европейская система интегрированных экономических счетов
  11. ВОПРОС: Система банковского надзора: виды, цели и задачи. Рейтинговая система CAMEL.
  12. У Вас Есть Система Тенденция в Направлении Механических Систем?
  13. 11.1. Роль информации в системе руководства ПОНЯТИЕ ИНФОРМАЦИОННОЙ СИСТЕМЫ
  14. 2.2.1. Банковская система как часть денежной системы страны
  15. 1.5.СИСТЕМА ФИНАНСОВ И СФЕРЫ ЕЕ ФУНКЦИОНИРОВАНИЯ. ФИНАНСОВАЯ СИСТЕМА, ЕЕ ЗВЕНЬЯ
  16. Организация системы защиты информации экономических систем
  17. Система управления взаимоотношений с клиентами (CRM система)
  18. § 1. Системы ранжирования в системе организационных форм соревнования
- Антикризисное управление - Деловая коммуникация - Документоведение и делопроизводство - Инвестиционный менеджмент - Инновационный менеджмент - Информационный менеджмент - Исследование систем управления - История менеджмента - Корпоративное управление - Лидерство - Маркетинг в отраслях - Маркетинг, реклама, PR - Маркетинговые исследования - Менеджмент организаций - Менеджмент персонала - Менеджмент-консалтинг - Моделирование бизнес-процессов - Моделирование бизнес-процессов - Организационное поведение - Основы менеджмента - Поведение потребителей - Производственный менеджмент - Риск-менеджмент - Самосовершенствование - Сбалансированная система показателей - Сравнительный менеджмент - Стратегический маркетинг - Стратегическое управление - Тайм-менеджмент - Теория организации - Теория управления - Управление качеством - Управление конкурентоспособностью - Управление продажами - Управление проектами - Управленческие решения - Финансовый менеджмент - ЭКОНОМИКА ДЛЯ МЕНЕДЖЕРОВ -